首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15763篇
  免费   3155篇
  国内免费   2727篇
化学   9437篇
晶体学   176篇
力学   1440篇
综合类   145篇
数学   1365篇
物理学   9082篇
  2024年   37篇
  2023年   205篇
  2022年   347篇
  2021年   543篇
  2020年   716篇
  2019年   547篇
  2018年   541篇
  2017年   601篇
  2016年   712篇
  2015年   645篇
  2014年   910篇
  2013年   1397篇
  2012年   969篇
  2011年   1058篇
  2010年   919篇
  2009年   1120篇
  2008年   1123篇
  2007年   1151篇
  2006年   1114篇
  2005年   870篇
  2004年   795篇
  2003年   739篇
  2002年   601篇
  2001年   528篇
  2000年   507篇
  1999年   456篇
  1998年   399篇
  1997年   316篇
  1996年   249篇
  1995年   232篇
  1994年   197篇
  1993年   149篇
  1992年   124篇
  1991年   129篇
  1990年   85篇
  1989年   83篇
  1988年   75篇
  1987年   64篇
  1986年   60篇
  1985年   57篇
  1984年   41篇
  1983年   22篇
  1982年   35篇
  1981年   34篇
  1980年   29篇
  1979年   28篇
  1978年   12篇
  1977年   21篇
  1976年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
951.
Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nanoparticle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.  相似文献   
952.
Energy storage using dielectric capacitors is a growing area of research and development. However, designing a highly performing dielectric capacitor is still a challenge. Despite the excellent results achieved in lead-based dielectrics, lead-free substitutes are essential because of the environmental concerns associated with lead-based products. The lead-free 1?x (0.94NaNbO3? 0.06SrZrO3)+ x Bi2O3 ceramics abbreviated NNSZ + xB for x = 0.0, 0.05, 0.1, 0.15, and 0.20 was fabricated via solid-state reaction. A recoverable energy density of 2.93 J cm?3 was obtained for NNSZ+0.1B, associated with high thermal stability (25–130 °C), excellent cycling (N = 105), and high efficiency (η) of 83.5%. Moreover, the introduction of Bi2O3 significantly improved the electrical insulation (?r at 1 kHz = 1608 and tan δ = 0.0038) and breakdown strength (380 kVcm?1) of NNSZ+0.1B by minimizing the formation of sodium, bismuth, and oxygen vacancies. The results obtained in this study provide a benchmark for further investigations on NaNbO3-based ceramics. More importantly, this study suggests that NNSZ + xB ceramics can be used in pulsed power technology.  相似文献   
953.
We discuss the data sampling frequency, the spectral resolution, and the limit for non-aliasing in the static modulated Fourier transform spectrometer based on a modified Sagnac interferometer. The measurement was performed in a very short 4 ms, which is applicable for real time field operation. The improved spectrometer characteristics were used to investigate the spectral properties of an InGaAs light emitting diode. In addition, The measured spectral peak was shifted from 6420 cm−1 to 6365 cm−1, as the temperature increased from 25 °C to 40 °C, when the operating current is fixed to be 0.55 A. As the applied current increased from 0.30 A to 0.55 A at room temperature, the spectral width was broadened from 316 cm−1 to 384 cm−1. Compared to the conventional Fourier transform spectrometer, the measured spectral width by the static modulated Fourier transform spectrometer showed a deviation less than 10%, and the spectral peak shift according to the temperature rise showed a difference within 2%.  相似文献   
954.
955.
The unique physical structure and abundant surface functional groups of MXene make the grafted organic molecules exhibit specific electrical and optical properties. This work reports the results of first-principles calculations to investigate the composite systems formed by different organic molecular monomers, namely acrylic acid (AA), acrylamide (AM), 1-aziridineethanol (1-AD) and glucose, and Ti3C2 MXene saturated with different functional groups, namely −OH, −O and −F. The results show that the interaction between organic molecules and the MXene surface depends on the type of functional groups of the organic molecules, while the strength of the interaction is determined by the type of surface functional groups and the number of hydrogen bonds. The bare Ti3C2 and Ti3C2(OH)2 can readily form strong chemical and hydrogen bonds with AA and AM molecules, leading to strong adsorption energy and a large amount of charge transfer, while the interaction between organic molecules and MXene saturated by −F or −O groups mainly exhibits physical interactions, accompanied by low adsorption energy and a small amount of charge transfer. This research provides theoretical guidance for the synthesis of high-performance MXene organic composite systems.  相似文献   
956.
Molybdenum disulfide (MoS2) has been regarded as one of the most promising candidates for replacing Pt group noble metals as an efficient electrocatalyst to enhance the hydrogen evolution reaction (HER) in consideration of its relatively high earth abundance. Recent studies show that the catalytic efficiency of MoS2 for HER can be promoted by the presence of 1T-phase MoS2. It is hard to precisely control the formation of 1T-MoS2, however, due to its metastability relative to 2H-MoS2. Elevating the stability of 1T phase allotrope is therefore of great importance and could be realized by replacing divalent S with monovalent elements or groups according to crystal field theory, which has been demonstrated through our first-principles density functional theory (DFT) calculation results. Differential Gibbs free energy analysis for hydrogen adsorption (ΔGH*) suggest that 1T and 1T′ MoSO (O doped MoS2) might be taken as potential candidate catalysts for HER process with better performance than 1T and 1T′ MoS2. We also propose a probable approach to synthesize 1T and 1T′ MoSO under oxidation circumstance environment of graphene oxide.  相似文献   
957.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.  相似文献   
958.
过渡金属催化的碳-氢(C-H)键活化因其优异的原子经济性及步骤简便性在过去几十年间蓬勃发展,已成为当前构建复杂化合物最常用的策略之一.对该过程中活性中间体的热力学研究有助于加深人们对反应机理的理解,指导新催化剂、新反应的理性设计.然而,近年来该领域的发展颇为缓慢,相应的报道十分零散,缺少系统的归纳和总结.本综述简要梳理了过渡金属-配体σ键键能的研究历程,并举例阐述了这些热力学参数在分析反应可行性、判断反应选择性等方面的应用,旨在推动过渡金属络合物相关的热力学研究的快速发展.  相似文献   
959.
Formaldehyde (FA, CH2O) is one of the toxic volatile organic compounds that cause harmful effects on the human body. In this work, the interaction of FA gas with metal phthalocyanine (MPc) molecules was studied by employing density functional theory calculations. A variety of [MPc]a (M = Sc, Ti, and V; a = –1, 0, and +1) complexes were studied, and the electronic properties, interaction energies, and charge transfer properties of all of the studied molecules were systematically discussed. Among the studied complexes, the Sc and Ti phthalocyanines were more reactive toward the adsorption of FA gas. Moreover, it was revealed that the interaction of the [ScPc]+1 and [TiPc]0 complexes with the CH2O molecule was stronger, in which the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap of 46% and 36% decreased after FA adsorption. The results indicated that the MPc-based materials may be a promising candidate for the detection of FA gas.  相似文献   
960.
Background: Filtration of osmotic solution affects selective penetration during osmotic dehydration (OD), and after drying is finished, this can influence the chemical composition of the material, which is also modified by OD. Methods: Osmotic dehydration was carried out in filtrated and non-filtrated concentrated chokeberry juice with the addition of mint infusion. Then, this underwent convective drying, vacuum-microwave drying and combined convective pre-drying, followed by vacuum-microwave finishing drying. Drying kinetics were presented and mathematical models were selected. The specific energy consumption for each drying method was calculated and the energy efficiency was determined. Results and Discussion: The study revealed that filtration of osmotic solution did not have significant effect on drying kinetics; however, it affected selective penetration during OD. The highest specific energy consumption was obtained for the samples treated by convective drying (CD) (around 170 kJ·g−1 fresh weight (fw)) and the lowest for the samples treated by vacuum-microwave drying (VMD) (around 30 kJ·g−1 fw), which is due to the differences in the time of drying and when these methods are applied. Conclusions: Filtration of the osmotic solution can be used to obtain the desired material after drying and the VMD method is the most appropriate considering both phenolic acid content and the energy aspect of drying.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号